移动设备扫描二维码访问 移动版鼠标点我 QQ登录 | 登录 | 注册 | 留言 | 加收藏

【初中数学】几何经典难题(二)附答案解析

2022-05-07         iXueHai.cn     爱学海 字体 - 小  + 大  纠错指正

1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.

(1)求证:AH=2OM;

(2)若∠BAC=600,求证:AH=AO.

2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.

求证:AP=AQ.

3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:

设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.

求证:AP=AQ.

4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.

求证:点P到边AB的距离等于AB的一半.



答案解析

1.

(1)延长AD到F连BF,做OG⊥AF,

又∠F=∠ACB=∠BHD,

可得BH=BF,从而可得HD=DF,

又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM

(2)连接OB,OC,既得∠BOC=1200从而可得∠BOM=600,

所以可得OB=2OM=AH=AO,得证。





上一篇【初中数学】几何经典难题(一)附答案解析

下一篇【初中数学】几何经典难题(三)

  Copyright © 2019-2023 爱学海 ixuehai.cn 版权所有  |   关于爱学海 |  商标证书  |  投诉反馈 |  版权声明  |  公司简介 |  中采网 |   粤ICP备09029428号    
全屏阅读