移动设备扫描二维码访问 移动版鼠标点我 QQ登录 | 登录 | 注册 | 留言 | 加收藏
当前位置: 首页 > 中学课本 > 中学数学 > 高二数学 > 正文 爱学海 > 高二数学 > 正文

【高中数学】第十章-排列组合二项定理 四、排列、组合综合

2021-10-06         iXueHai.cn     爱学海 字体 - 小  + 大  纠错指正

1. I. 排列、组合问题几大解题方法及题型:

①直接法.  

②排除法.

③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如

④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.

例如:n个元素全排列,其中m个元素互不相邻,不同的排法种数为多少?

⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.

⑥调序法:当某些元素次序一定时,可用此法.解题方法是:

例如:n个元素全排列,其中m个元素顺序不变,共有多少种不同的排法?

解法一:(逐步插空法)(m+1)(m+2)…n = n/ m!;

时有意义.

⑧隔板法:常用于解正整数解组数的问题.


⑩指定元素排列组合问题.

01. 从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内 。先CA策略,


02. 从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内。先CA策略,

n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素。先CA策略,

1. 排列组合常见解题策略:

①特殊元素优先安排策略;

②合理分类与准确分步策略;

③排列、组合混合问题先选后排的策略(处理排列组合综合性问题一般是先选元素,后排列);

④正难则反,等价转化策略;

⑤相邻问题插空处理策略;

⑥不相邻问题插空处理策略;

⑦定序问题除法处理策略;

⑧分排问题直排处理的策略;

⑨“小集团”排列问题中先整体后局部的策略;

⑩构造模型的策略.

2. 组合问题中分组问题和分配问题

上一篇【高中数学】第十章-排列组合二项定理 三、组合

下一篇【高中数学】第十章-排列组合二项定理 五、二项式定理

  Copyright © 2019-2023 爱学海 ixuehai.cn 版权所有  |   关于爱学海 |  商标证书  |  投诉反馈 |  版权声明  |  公司简介 |  中采网 |   粤ICP备09029428号    
全屏阅读